

SUGGESTED SOLUTION

CA INTERMEDIATE

SUBJECT- COSTING

Test Code – CIM 8640

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

ANSWER – 1

Calculation of earnings under different wage schemes:

(i) Day wages

Worker	Day wages ((₹)	Actual Output (Units)	Labour cost per 100 pieces (₹)		
А	600		180	333.33		
В	600		120	500.00		
С	600		100	600.00		
Total	1,800		400			

Average labour cost to produce 100 pieces:

 $= \frac{\text{Total wages paid}}{\text{Total output}} \times 100 = \frac{₹1,800}{400 \text{ units}} \times 100 = ₹450$

(2 MARKS)

(ii)	Piece rate										
	Worker	Actual Output (Units)	Piece rate (₹)	Wages earned (₹)	Labour cost per 100 pieces (₹)						
	А	180	7.50	1,350	750.00						
	В	120	7.50	900	750.00						
	С	100	7.50	750	750.00						
	Total	400		3,000							

Average cost of labour for the company to produce 100 pieces:

= ₹3,000/400 units ×100 = ₹750

(2 MARKS)

(iii) Halsey Scheme

Worker	Actual Output (Units)	Std. time (Hrs.)	Actual time (Hrs.)	Time saved (Hrs.)	Bonus hours (50% of time saved)	Rate per hour (₹)	Total wages (₹)	Labour cos per 100 pieces (₹)
	А	В	С	D=B-C	E	F	G=F×(C+D)	H=G/A*100
А	180	18	8	10	5	75	975	541.67
В	120	12	8	4	2	75	750	625.00
С	100	10	8	2	1	75	675	675.00
Total	400						2,400	

Average cost of labour for the company to produce 100 pieces = $\frac{\cancel{2,400}}{400 \text{ units}} \times 100 = \cancel{600}$

(2 MARKS)

(i	(iv) Rowan Scheme:									
	Worker Actu Outp (Unit		Std. time (Hrs.)	A ti (F	ctual me Irs.)	Time saved (Hrs.)	Bonus hours*	Rate per hour (₹)	Total wages including bonus (₹)	Labour cost per 100 pieces (₹)
		Α	В		С	D=B-C	E	F	G=F×(C+D)	H=G/A*100
	Α	180	18		8	10	4.44	75	933 🔍	518.33
	В	120	12		8	4	2.67	75	800	666.67
	С	100	10		8	2	1.60	75	720	720.00
	Total	400							2,453	

* Bonus hours = $\frac{\text{TimeSaved}}{\text{Std.Time}} \times \text{Actualtime}$

Average cost of labour for the company to produce 100 pieces

(2 MARKS)

ANSWER – 2

ANSWER - A

(i) Re - order quantity =
$$\sqrt{\frac{2AO}{C \times i}}$$

$$= \sqrt{\frac{2 \times 7500 \times 12 \times 500}{60 \times 10\%}}$$

= 3,873 units

(ii) Re-order level

= Maximum re-order period X Maximum usage

= 8 weeks X 750 units per week

= 6,000 units

- (iii) Minimum stock level
 - = Re-order level {Normal usage X Average reorder period}

= 6,000 - (500 X 6.5)

= 2,750 units

- (iv) Maximum stock level
 - = Re-order level + Re-order quantity (Minimum usage X Minimum re-order period)
 - = 6,000 + 3,873 (5 X 250)
 - = 8,623 units
- (v) Average stock level
 - = 1/2 (Minimum stock level + Maximum stock level)
 - = 1/2 (2,750 + 8,623)
 - = 5,687 units

(6 MARKS)

ANSWER – B

(i) Calculation of Economic Order Quantity

EOQ =
$$\sqrt{\frac{2AO}{C}} = \sqrt{\frac{2 \times 12,000 \text{ units } \times Rs.1,800}{Rs.640 \times 18.75 / 100}} = 600 \text{ units}$$

(1 MARK)

(ii) Evaluation of Profitability of Different Options of Order Quantity

When EOQ is ordered

	(Rs.)
Purchase Cost (12,000 units × Rs. 640)	76,80,000
Ordering Cost $\left[\frac{A}{Q} \times O - (12,000 \text{ units } / 600 \text{ units}) \times \text{Rs. } 1,800\right]$	36,000
Carrying Cost $\left(\frac{Q}{2} \times C \times i - 600 \text{ units } \times \text{Rs. 640 } \times \frac{1}{2} \times 18.75/100\right)$	36,000
Total Cost	77,52,000

(b) When Quantity Discount is accepted

	(Rs.)
Purchase Cost (12,000 units × Rs. 608)	72,96,000
Ordering Cost $\left[\frac{A}{Q} \times O (12,000 units/3000 units) \times Rs. 1,800\right]$	7,200
Carrying Cost $\left[\frac{\varrho}{2} \times C \times i(3,000 \text{ units } \times Rs.608 \times \frac{1}{2} \times 18.75/100)\right]$	1,71,000
Total Cost	74,74,200

Advise - The total cost of inventory is higher if EOQ is adopted. If M/s. X Private Limited gets a discount of 5% on the purchases of "SKY BLUE" (if order size is 3,000 components at a time), there will be financial benefit of Rs. 2,77,800 (77,52,000 – 74,74,200). However, order size of big quantity will increase volume of average inventory to 5 times. There may be risk of shrinkage, pilferage and obsolescence etc., of inventory due to increase in the average volume of inventory holding. This aspect also has to be taken into consideration before opting the discount offer and taking final decision.

(5 MARKS)